

FEATURES

Quasi-elliptic Bandpass Design L-band Tuning Range Can Be Cascaded for Sharper Roll-off On-Device Temperature Measurement Compact Form-factor Control and Power over USB 2.0

Specifications

Tuning Range: 1650 – 2120 MHz Insertion Loss: 6.3 dB typical Return Loss: 16 dB typical

APPLICATIONS

Jamming Mitigation Communications Receivers ESM Receiver Protection TR Modules Electronic Warfare

GENERAL DESCRIPTION

IM1101DC is a reconfigurable, quasi-elliptic bandpass filter, designed and packaged to make evaluation and testing straightforward.

FUNCTIONAL BLOCK DIAGRAM

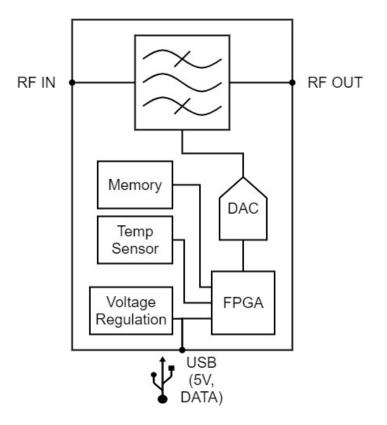


Figure 1. Functional Block Diagram

*Specifications subject to change without notice

Page **1** of **10**

SPECIFICATIONS

Specifications are for the IM1101DC L-band bandpass demo unit.

Table 1. Electrical Specifications

Parameter	TEST CONDITION/COMMENTS	ΜιΝ	TYP.	ΜΑΧ	UNITS
Tuning Range	Filter center frequency	1650		2120	MHz
Tuning Resolution			5		MHz
Passband					
Insertion Loss	At center frequency	4.37	6.3	7.4	dB
Return Loss	Within -3 dB bandwidth	11.56	16	38.48	dB
-3 dB Bandwidth		170.67	229.87	280	MHz
-20 dB Bandwidth		448	520.46	591.33	MHz
Group Delay	Within -3 dB bandwidth3.584.7		4.77	6.57	ns
Tuning Speed	See Note 1	20		μs	
Stop Band	See Note 2				
Rejection – 10%	Average loss 10% away from center frequency	y 14		dB	
Rejection – 20%	Average loss 20% away from center frequency	28		dB	
Rejection – 30%	Average loss 30% away from center frequency	requency 25		dB	
IIP3	Passband 2-Tone Test (See Note 3)	28.91 30.96 32.67		dBm	

NOTES:

- 1. Tuning speed is approximated for this demo unit. Actual tuning speed of the filter will depend on voltage driver and control interface latency.
- 2. Reduction in stop band rejection from 20% to 30% is due to reentrant effects.
- 3. IIP3 is determined using the fundamental tone in the passband and the highest 3rd order product produced. Tone spacing of 0.5 MHz was used.

^{*}Specifications subject to change without notice

Indiana Microelectronics, LLC reserves the right to make changes to the product(s) or information contained herein without notice. Visit www.IndianaMicro.com for additional information.

ABSOLUTE MAXIMUM RATINGS

Table 2. Absolute Maximum Ratings

Parameter	RATING		
Supply Voltage	5V (USB)		
Passband RF Power	20dBm		
Stopband RF Power	20dBm		
Ambient Operating Temperature	-40 to 60 °C		
Storage Temperature	-40 to 60 °C		

*Specifications subject to change without notice

Page **3** of **10**

TYPICAL PERFORMANCE DATA

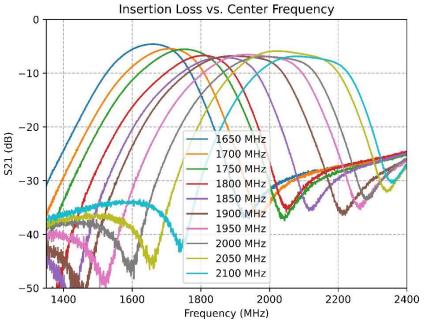


Figure 2. Filter Insertion Loss vs Center Frequency

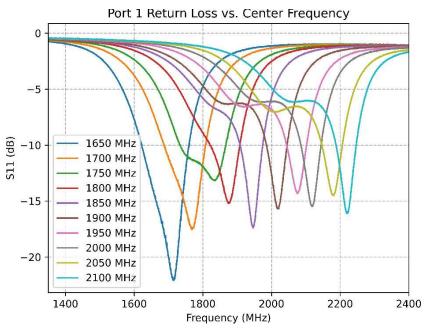


Figure 3. Filter Return Loss vs Center Frequency

*Specifications subject to change without notice

Page **4** of **10**

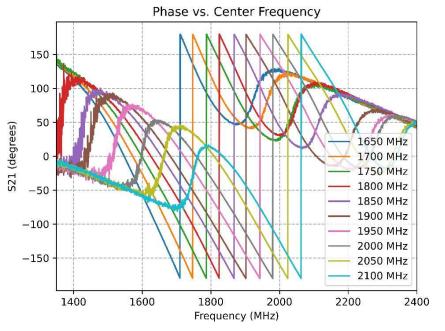


Figure 4. Filter Phase vs Center Frequency

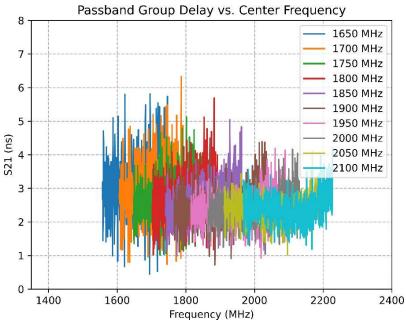


Figure 5. Filter Group Delay vs Center Frequency

Page **5** of **10**

^{*}Specifications subject to change without notice

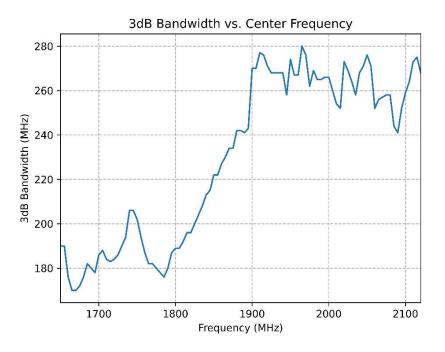


Figure 6. Filter -3dB Bandwidth vs Center Frequency

*Specifications subject to change without notice

Page **6** of **10**

HARDWARE INTERFACE

Table 3. Connectors

ΝΑΜΕ	Түре	HARDWARE	MANUFACTURER	MANUFACTURER PART NUMBER
RF1	RF Input / Output	SMA Female	Amphenol RF	132146
RF2	RF Input / Output	SMA Female	Amphenol RF	132146
Power / Control	USB	USB Mini-B	Amphenol ICC	MUSB15104

*Specifications subject to change without notice

Page **7** of **10**

FILTER CONTROL SOFTWARE

The IM Tunable Filter Demo unit is provided with control software for ease of testing. To run, connect the filter and the provided USB thumb drive to the same Windows machine. Launch *TunableFilter.exe*. The user interface is detailed below in Figure 7 and Figure 8:

🚡 Indiana Microelectronics Tuna	ble Filter	9 <u>22</u>	
Connect 1 Get Device Temp 2	Сантик. Г		
Tune 1650-2120 MHz @	5 MHz Resolution	1 <mark>3</mark>	
f: 17	70	MHz	Apply Bypass
Connection Status:	Connected		
Part Number:	IM1101DC	1 😱	
Device Temperature:	31.25 °C	11 1	I
Frequency applied 10			

Figure 7. Tunable Filter Control Software

INDEX	ΝΑΜΕ	FUNCTION
1	Connect Button Opens the connection browser (see Figure 8, Table 5)	
2	Get Temperature Button Reads device temperature and updates respective field	
3	Frequency Tuning Range(s) Tuning range and resolution of filter. See Note 1	
4	Frequency Input Field Field to type desired frequency setpoint	
5	Apply Frequency Button Applies frequency typed in Frequency Input Field. See Note 2	
6	Bypass State Enable Applies Bypass (all-pass) state to filter, if applicable. See Note	
7	Connection Status	Shows status of connection to Tunable Filter
8	Connected Device Part Number Shows Part Number of connected Tunable Filter	
9	Connected Device Temperature	Shows last read Device Temperature. See Note 4
10	Status Bar	Temporarily shows relevant messages and errors
	Τα	ble 4. Control Software Details

*Specifications subject to change without notice

Page **8** of **10**

NOTES:

- Frequencies between and including the listed bounds at the provided resolution interval are valid. For example, 1650, 1655, 1660, etc. as shown for the example device in Figure 7. Values within the bounds but outside of provided resolution (e.g. 1653) will be automatically rounded. Note that some devices have multiple ranges of valid tune states. Values between listed ranges are invalid.
- 2. Pressing ENTER also applies the value in the Frequency Input Field.
- 3. Not all devices have a bypass state. The button is unavailable in this case.
- 4. Device temperature is read on initial connect but will only update when Get Device Temp is pressed.

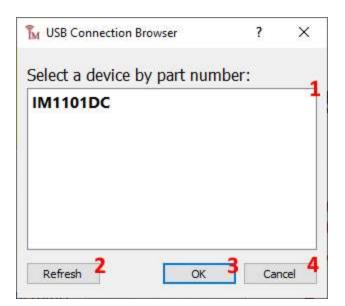


Figure 8. Control Software Connection Browser

INDEX	ΝΑΜΕ	FUNCTION
1	Discovered Device List	Shows a list of all discovered IM Tunable Filters.
2	Refresh List Button	Re-searches for available IM Tunable Filters and updates list
3	OK Button	Connects to selected part number. See Note 1
4	Cancel Button	Cancels connection attempt and closes browser. See Note 3

Table 5. Connection Browser Details

NOTES:

- 1. Desired Part number must be highlighted in list when pressed. Double-clicking desired serial number also initiates connection.
- 2. Equivalent to closing window with X button.

*Specifications subject to change without notice

Indiana Microelectronics, LLC reserves the right to make changes to the product(s) or information contained herein without notice. Visit www.IndianaMicro.com for additional information.

Indiana Microelectronics, LLC. All rights reserved. Information in this document is provided about Indiana Microelectronics, LLC products. These materials are provided by Indiana Microelectronics as a service to its customers and may be used for informational purposes only. Except as provided in Indiana Microelectronics' Terms and Conditions of Sale for such products or in any separate agreement related to this document, Indiana Microelectronics assumes no liability whatsoever. Indiana Microelectronics assumes no responsibility for errors or omissions in these materials. Indiana Microelectronics may make changes to specifications and product descriptions at any time, without notice. Indiana Microelectronics makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF INDIANA MICROELECTRONICS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INDIANA MICROELECTRONICS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. INDIANA MICROELECTRONICS SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Indiana Microelectronics products are not intended for use in medical, lifesaving or life sustaining applications. Indiana Microelectronics customers using or selling Indiana Microelectronics products for use in such applications do so at their own risk and agree to fully indemnify Indiana Microelectronics for any damages resulting from such improper use or sale.

*Specifications subject to change without notice

Page **10** of **10**